1. Nguyen P, Leray V, Diez M, Serisier S, Bloc'h JL, Siliart B, et al. Liver lipid metabolism. Journal of animal physiology and animal nutrition. 2008;92(3):272-83. [
DOI:10.1111/j.1439-0396.2007.00752.x]
2. Tao L, Guo X, Xu M, Wang Y, Xie W, Chen H, et al. Dexmedetomidine ameliorates high‐fat diet‐induced nonalcoholic fatty liver disease by targeting SCD1 in obesity mice. Pharmacology Research & Perspectives. 2021;9(1):e00700. [
DOI:10.1002/prp2.700]
3. Dobrzyn P, Jazurek M, Dobrzyn A. Stearoyl-CoA desaturase and insulin signaling-What is the molecular switch?. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2010;1797(6-7):1189-94. [
DOI:10.1016/j.bbabio.2010.02.007]
4. Safarzade A, Safarpour H. Enhancement of Serum Myonectin Levels by Progressive Resistance Training in Rats Fed with High-Fat Diet and Sucrose Solution. Zahedan Journal of Research in Medical Sciences. 2021;23(4). [
DOI:10.5812/zjrms.108209]
5. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The effects of physical exercise on fatty liver disease. Gene expression. 2018;18(2):89. [
DOI:10.3727/105221617X15124844266408]
6. Moosavi-Sohroforouzani A, Ganbarzadeh M. Reviewing the physiological effects of aerobic and resistance training on insulin resistance and some biomarkers in non-alcoholic fatty liver disease. KAUMS Journal (FEYZ). 2016 Aug 10;20(3):282-96.(in Persian)
7. Mohammadzadeh F, Hosseini V, Alihemmati A, Shaaker M, Mosayyebi G, Darabi M, et al. The role of stearoyl-coenzyme a desaturase 1 in liver development, function, and pathogenesis. Journal of Renal and Hepatic Disorders. 2019;3(1):15-22.(in Persian) [
DOI:10.15586/jrenhep.2019.49]
8. Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, et al. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients. 2019;11(10):2283. [
DOI:10.3390/nu11102283]
9. Dziewulska A, Dobosz AM, Dobrzyn A, Smolinska A, Kolczynska K, Ntambi JM, et al. SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. Journal of cellular physiology. 2020;235(2):1129-40. [
DOI:10.1002/jcp.29026]
10. De la Cruz-Color L, Hernández-Nazará ZH, Maldonado-González M, Navarro-Muñíz E, Domínguez-Rosales JA, Torres-Baranda JR, et al. Association of the PNPLA2, SCD1 and leptin expression with fat distribution in liver and adipose tissue from obese subjects. Experimental and Clinical Endocrinology & Diabetes. 2020;128(11):715-22. [
DOI:10.1055/a-0829-6324]
11. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7(11):9453-74. [
DOI:10.3390/nu7115475]
12. Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell reports. 2017;19(1):1-9. [
DOI:10.1016/j.celrep.2017.03.026]
13. Kienesberger PC, Lee D, Pulinilkunnil T, Brenner DS, Cai L, Magnes C, et al. Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling. Journal of Biological Chemistry. 2009;284(44):30218-29. [
DOI:10.1074/jbc.M109.047787]
14. Schreiber R, Xie H, Schweiger M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019;1864(6):880-99. [
DOI:10.1016/j.bbalip.2018.10.008]
15. Turpin SM, Hoy AJ, Brown RD, Garcia Rudaz C, Honeyman J, Matzaris M, Watt MJ. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia. 2011;54:146-56. [
DOI:10.1007/s00125-010-1895-5]
16. Che L, Paliogiannis P, Cigliano A, Pilo MG, Chen X, Calvisi DF. Pathogenetic, prognostic, and therapeutic role of fatty acid synthase in human hepatocellular carcinoma. Frontiers in oncology. 2019;9:1412. [
DOI:10.3389/fonc.2019.01412]
17. Sun B, Zhou J, Gao Y, He F, Xu H, Chen X, Zhang W, Chen L. Fas-associated factor 1 promotes hepatic insulin resistance via JNK signaling pathway. Oxidative medicine and cellular longevity. 2021;2021. [
DOI:10.1155/2021/3756925]
18. Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008;294(3):G619-26. [
DOI:10.1152/ajpgi.00428.2007]
19. Domingos MM, Rodrigues MF, Stotzer US, Bertucci DR, Souza MV, Marine DA, et al. Resistance training restores the gene expression of molecules related to fat oxidation and lipogenesis in the liver of ovariectomized rats. European journal of applied physiology. 2012;112:1437-44. [
DOI:10.1007/s00421-011-2098-6]
20. Zacharewicz E, Hesselink MK, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. Journal of Internal Medicine. 2018;284(5):505-18. [
DOI:10.1111/joim.12729]
21. Huijsman E, van de Par C, Economou C, van der Poel C, Lynch GS, Schoiswohl G, et al. Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. American Journal of Physiology-Endocrinology and Metabolism. 2009;297(2):E505-13. [
DOI:10.1152/ajpendo.00190.2009]
22. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011;60(9):1278-83. [
DOI:10.1136/gut.2011.242073]
23. Ehsanifard Z, Mir-Mohammadrezaei F, Safarzadeh A, Ghobad-Nejhad M. Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. Journal of Herbmed Pharmacology. 2017;6(4):160-4.
24. Romero-Sarmiento Y, Soto-Rodríguez I, Arzaba-Villalba A, García HS, Alexander-Aguilera A. Effects of conjugated linoleic acid on oxidative stress in rats with sucrose-induced non-alcoholic fatty liver disease. Journal of Functional Foods. 2012;4(1):219-25. [
DOI:10.1016/j.jff.2011.10.009]
25. Machrina Y, Pane YS, Lindarto D. The expression of liver metabolic enzymes ampkα1, ampkα2, and pgc-1α due to exercise in Type-2 diabetes mellitus rat model. Open Access Macedonian Journal of Medical Sciences. 2020;8(A):629-32. [
DOI:10.3889/oamjms.2020.4550]
26. Morcillo S, Martín-Núñez GM, García-Serrano S, Gutierrez-Repiso C, Rodriguez-Pacheco F, Valdes S, et al. Changes in SCD gene DNA methylation after bariatric surgery in morbidly obese patients are associated with free fatty acids. Scientific reports. 2017;7(1):1-8. [
DOI:10.1038/srep46292]
27. Zhang W, Zhang X, Wang H, Guo X, Li H, Wang Y, et al. AMP-activated protein kinase α1 protects against diet-induced insulin resistance and obesity. Diabetes 2012; 61: 3114-3125. [
DOI:10.2337/db11-1373]
28. Minuzzi LG, Kuga GK, Breda L, Gaspar RC, Muñoz VR, Pereira RM, et al. Short-term resistance training increases APPL1 content in the liver and the insulin sensitivity of mice fed a long-term high-fat diet. Experimental and Clinical Endocrinology & Diabetes. 2020;128(01):30-7. [
DOI:10.1055/a-0885-9872]
29. Nikroo H, Hosseini SR, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiology & Behavior. 2020;227:113149. [
DOI:10.1016/j.physbeh.2020.113149]
30. Fernandez-Real JM, Menendez JA, Moreno-Navarrete JM, Blüher M, Vazquez-Martin A, Vázquez MJ, et al. Extracellular fatty acid synthase: a possible surrogate biomarker of insulin resistance. Diabetes. 2010;59(6):1506-11. [
DOI:10.2337/db09-1756]